Essentials and Uniqueness of 3-D Global Particle Simulations

Ken Nishikawa

Rutgers University

September 6, 2001 at ISSS-6

How to understand and use TRISTAN code

Computer Simulation Using Particles

by R.W. Hockney, J.W. Eastwood

Plasma Physics Via Computer Simulation/Book and Disk

by C. K. Birdsall, A. B. Langdon

Computer Space Plasma Physics: Simulation

Technique and Software edited by H. Matsumoto and Y. Omura

Chapters 2. KEMPO01 and 3. TRISTAN

Comments provided in the both codes

This notes presented at ISSS-6

Outline

- A brief history of global simulations
- Introduction

A brief tour of magnetosphere

Basic equations

Plasma parameters

- Global structure of code
 - Initialization, Field update, Particle update,

Interpolation, Charge fluxes, Smoothing,

Boundary conditions

- Post processing
- Global Solar Wind-Magnetosphere Interactions
- Future work

Other methods

• MHD simulations

without kinetic effects

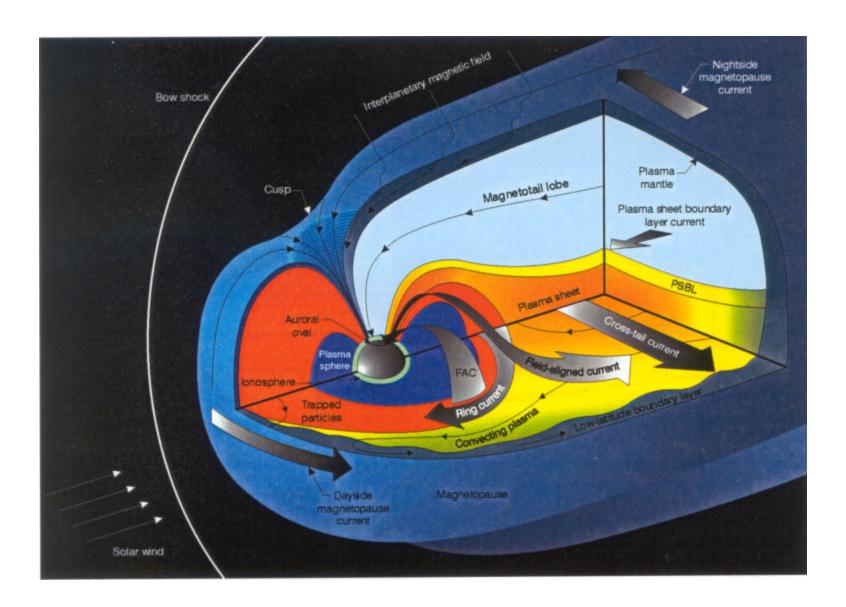
Hybrid simulations

electrons fluids

Tailored simulations

work well with local simulations

• Simulations with modules


difficult to combine with other methods

• Particle simulations

difficult to establish spatial and temporal resolutions

A brief history of global simulations

- 1978: First 2-D MHD simulations by Leboeuf et al.
- Early 80's: First 3-D MHD simulations (Brecht, Lyon, Wu, Ogino)
- Late 80's: Model refinements (FACs, ionosphere, higher resolution, fewer symmetries)
- Early 90's: Long geomagnetic tail, refined ionosphere models.
- 1992: First global particle simulation (Buneman et al.)
- Mid 90's: ISTP is well under way, first comparisons with *in situ* space observations and ground based observations. Beginning of *quantitative modeling*.
- 1997: First particle simulations with IMF (Nishikawa)
- Late 90's: Global modeling has become an integrated part of many experimental studies. Models provide an extension to spatially limited observations and help us to understand the physics
- 2000: A substorm model by global particle simulation (Nishikawa)

What triggers a substorm?

How are high energy particles injected during magnetic storms?

How is a ring current generated and dissipated?

Present global particle simulations can do

Reproduce the gross features of Magnetosphere including

a reasonable representation of

- **▶** the bow shock
- **▶** the magnetopause
- **▶** the cusps
- **▶** the magnetotail
- **▶** the effects of the IMFs
- **▶** fields and currents

Reproduce the fundamental features of the dynamic Magnetosphere:

- > substorms
- **▶** transient events due to variations of solar wind conditions
- **➤** convections

Why do we need to do particle simulations?

- *In MHD simulations kinetic effects are not included
 - **P** dynamics of boundaries are not properly simulated
 - **P** particle injections are not included, in particular accelerated high energy particles
 - **P** ring current is not included in the present time
- *Computer power (memory and speed) will be available in ten years or so in order to perform global particle simulations for quantitative comparisons with observations including velocity distributions
- *Prepare for future missions such as MMS and MC DRACO in order to provide useful information for planning and data analysis
- *Predictions of high energy particle injections for Space Weather

Basic equations

Maxwell equations

$$\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}$$
 and $\partial \mathbf{D}/\partial t = \nabla \times \mathbf{H} - \mathbf{J}$

As well as Newton-Lorentz (relativistic)

$$dm\mathbf{v}/dt = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$\varepsilon_0 = 1$$
 and hence $\mu_0 = 1/c^2$

$$D = E$$
 and $B \rightarrow cB$

$$E \Leftrightarrow B$$
 (symmetric)

Plasma parameters

 $\omega_e = (nq_e^2/m_e)^{1/2}$: electron plasma frequency

 $\omega_i = (nq_i^2/m_i)^{1/2}$: ion plasma frequency

 $\Omega_e = q_e B/m_e$: electron gyrofrequency

 $\Omega_i = q_i B/m_i$: ion gyrofrequency

 $\lambda_e = v_e/\omega_e$: electron Debye length

 $\lambda_i = v_i/\omega_i$: ion Debye length

 $\lambda_{ce} = c/\omega_e$: electron inertia length

 $\lambda_{ci} = c/\omega_i$: ion inertia length

 $\Delta x \ge 3\lambda_e$: (to avoid numerical instability)

 $\Delta t \leq \Delta x/c$: Courant condition (c = 0.5)

if $\,c=10v_e$, $T_i=T_e,$ and $m_i=16\;m_e$

 $\lambda_{e} << \lambda_{i} << \lambda_{ce} << \lambda_{ci}$

1 4 10 40

Numerical considerations

• Scale Size

- ➤ the scale of the system ranges from 10s of Kms in the ionosphere to 100s of Earth radii in the far tail.
- > physical values vary up to 7 orders of magnitude, e.g., $ρ > (10^{-1} 10^4)$, B > $(10^{-2} 10^4)$, β > $(10^{-5} 10^2)$, n > $(10^{-2} 10)$

Time step

➤ the smallest time step is considered by the fastest wave speed in the system, which is of order of the fast mode speed – this can be very high near the Earth.

Verification

➤ one of the best tests of a numerical method is to compare its results with observations – however, since the observations are usually single or dual, the comparisons are not easy or comprehensive.

Main streams of code

Simulation arrays, parameters, commons

Open files, read data

Initialization (solar wind particles, dipole etc)

$$B(n+1) = B(n) + 0.5*E(n)\Delta t$$

Push particles

$$B(n+1) = B(n) + 0.5*E(n)\Delta t$$

Surface, postedge, preledge

$$E(n+1) = E(n) + B(n)\Delta t$$

Current charge fluxes: x-, y-, zsplip, depsit

Checking particles at the boundaries

Inject solar wind particles at $x = x_s$

At the last step write data for restart

Field Update

Space-time symmetry ⇔ space- and time centered

Postprocessing

```
    Snapshots (NCARG, Techplot, AVS)
        electron (ion) density at any cross-sections
        with arrows (magnetic fields, fluxes)
        electron (ion) flux (velocity) with arrows
        (flux (velocity) in the cross-section)
        3-D displays of isosurface
        streamlines of magnetic fields (velocity)
```

Time-dependent
 movies (electron density, magnetic field lines, etc)
 local electromagnetic fields (E, B)
 sheet currents in the tail

• Requires new graphics depend on physics you would like to understand

References of global particle simulations

- 1. "Solar wind-magnetosphere interaction as simulated by a 3D EM particle code," Buneman, O., T. Neubert and K.-I. Nishikawa, *IEEE Trans. Plasma Sci.*, 20, 810, 1992.
- 2. "Solar wind-magnetosphere interaction as simulated by a 3D EM particle code,"
 Buneman, O., K.-I. Nishikawa, and T. Neubert, in Space Plasmas: Coupling Between
 Small and Medium Scale Processes, Geophys. Monogr. Ser., vol. 86, edited by M.
 Ashour-Abdalla, T. Chang, and P. Dusenbery, p. 347, AGU, Washington D.C., 1995.
- 3. "Particle entry into the magnetosphere with a southward IMF as simulated by a 3-D EM particle code," Nishikawa, K.-I., J. Geophys. Res., 102, 17,631, 1997.
- 4. "Reconnections at near-Earth magnetotail and substorms studied by a 3-D EM particle code," Nishikawa, K.-I., Geospace Mass and Energy Flow: Results From the International Solar-Terrestrial Physics Program, Geophys. Monogr. Ser., vol. 104, edited by J. L. Horwitz, W. K. Peterson, and D. L. Gallagher, p. 175, AGU, Washington D.C., 1998.

- 5. "Particle entry through reconnection grooves in the magnetopause with a dawnward IMF as simulated by a 3-D EM particle code," Nishikawa, K.-I., Geophys. Res. Lett., 25, 1609, 1998.
- 6. "Evolution of thin current sheet with a southward IMF studied by a 3-D EM particle code," Nishikawa, K.-I. And S. Ohtani, J. Geophys. Res., 105, 13,017, 2000.
- 7. "Global Particle Simulation for a Space Weather Model: Present and Future," Nishikawa, K.-I. And S. Ohtani, *IEEE Trans. Plasma Sci.*, 28, 1991, 2000.
- 8, "Global particle simulation study of substorm onset and particle acceleration," Nishikawa, K.-I., Space Sci. Rev., 95, 361, 2001.
- 9. "Visualization and criticality of three-dimensional magnetic field topology in the magnetotail," Cai, D.-S., Y. Li, T. Ichikawa, C. Xiao, and K.-I. Nishikawa, Earth Planets Space, in press, 2001.

Future Plans

- •Run simulations with better resolutions using **HPF Tristan** code on **ORIGIN2000**
- •Simulations related to magnetic storms including magnetic plasma clouds
- •Using satellite date for initial solar wind conditions, perform **case studies** to compare with observations
- •Improve 3-D displays in order to understand physics involved with Techplot, AVS
- •Implement a better ionospheric model including ionospheric outflows
- •Investigate high energy particle injections into the ionosphere
- •Predict energetic particle injection in conjunction with magnetic storms with typical solar wind parameters
- •Investigate the dayside magnetopause including Cluster observations
- •Plan and asses multi-satellite missions (MMS, MC DRACO)